Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 2 (2011), pp 9-20 DOI: 10.7508/ijmsi.2011.02.002

Properties of Central Symmetric X**-Form Matrices**

A. M. Nazari∗ , E. Afshari and A. Omidi Bidgoli

Department of Mathematics, University of Arak, Arak, 38156, Iran

E-mail: a-nazari@araku.ac.ir E-mail: e-afshari@arashad.araku.ac.ir

ABSTRACT. In this paper we introduce a special form of symmetric matrices that is called central symmetric *X*-form matrix and study some of their properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

Keywords: Inverse eigenvalue problem, Inverse singular value problem, eigenvalue, singular value.

2000 Mathematics subject classification: 15A29; 15A18.

1. INTRODUCTION

In [3,4] H. Pickman et. studied the inverse eigenvalue problem of symmetric tridiagonal and symmetric bordered diagonal matrices. In this paper we introduce the odd and even order central symmetric X -form matrix for an integer number *n* respectively as below: suppose

∗Corresponding Author

Received 25 February 2010; Accepted 21 August 2010 -c 2011 Academic Center for Education, Culture and Research TMU

9

For a given $2n - 1$ real numbers such as

$$
\lambda_1^{(n)} < \lambda_1^{(n-1)} < \ldots < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \ldots < \lambda_n^{(n)},
$$

or for a given 2n real numbers such as

$$
\lambda_1^{(2n)} < \lambda_1^{(2(n-1))} < \ldots < \lambda_1^{(2)} < \lambda_2^{(2)} < \ldots < \lambda_{2(n-1)}^{(2(n-1))} < \lambda_{2n}^{(2n)},
$$

we construct a matrix A_n such that $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$ are the maximal and minimal eigenvalues of submatrix A_j respectively for $j = 1, 2, ...n$ where A_j *isdefinedbyto*

A*^j* = ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ a*^j* b*^j* a² b² a1 b² a² b*^j* a*^j* ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2*j*−1)×(2*j*−1) ,(3) and

matrix B_j such that $\lambda_1^{(2j)}$ and $\lambda_{2j}^{(2j)}$ are the maximal and minimal eigenvalues of submatrix B_j respectively for $j = 1, 2, ...n$ where B_j *isdefinedby* $B_j =$ $\sqrt{ }$ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ a_j b_{*j*} a_2 b_2 a_1 b_1 $b_1 \quad a_1$ b_2 a_2 b_j a_{*j*} ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2*j*)×(2*j*) .

2. PROPERTIES OF THE MATRICES A_n and B_n

Let $p_0(\lambda) = 1$, $q_0(\lambda) = 1$, $p_j(\lambda) = det(A_j - \lambda_j)$ for $j = 1, 2, ..., n$ and $q_j(\lambda) = det(B_j - \lambda_j)$ for $j = 1, 2, ..., n$.

Lemma 1. For a given matrix A_j and B_j the sequence $p_j(\lambda)$ and $q_j(\lambda)$ satisfy *in the following recurrence relations:*

a) $p_1(\lambda)=(a_1 - \lambda),$ b) $p_j(\lambda) = [(a_j - \lambda)^2 - b_j^2]p_{j-1}(\lambda), j = 2, 3, ..., n.$ c) $q_1(\lambda) = ((a_1 - \lambda)^2 - \check{b}_1^2),$ b) $q_j(\lambda) = [(a_j - \lambda)^2 - b_j^2]q_{j-1}(\lambda), j = 2, 3, ..., n.$

Proof. The proof is clear by extending determinants of $(A_j - \lambda I_j)$ and $(B_j \lambda I_j$ on their first columns.

2.1. **LU factorization of central symmetric** X**-form matrix.**

Let A be a central symmetric X -form matrix in form (1) and B be a central symmetric X -form matrix in form (2) , then we see that the LU Doolitel factorization of A and B are given by

L*^A* = ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 ... 1 1 *n*+1*,n*−¹ ¹ ... ²*n*−1*,*¹ ¹ ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2*n*−1)×(2*n*−1) ,

where the elements $\ell_{i,j}$ and $u_{i,j}$ are as the follwing

$$
\ell_{n+i,n-i} = \frac{b_{i+1}}{a_{i+1}} \qquad i = 1, 2, ..., n-1,
$$

Also

$$
\begin{cases}\nu_{i,2n-i} = b_{n+1-i} & i = 1,2,..,n-1 \\
u_{ii} = a_{n+1-i} & i = 1,2,...,n \\
u_{n+i,n+i} = \frac{a_{i+1}^2 - b_{i+1}^2}{a_{i+1}} & i = 1,2,...,n-1.\n\end{cases}
$$

and L_B and U_B in factorization of $B = L_B U_B$ are as below

$$
L_B = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & 1 & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & 1 \\ \frac{b_n}{a_n} & & & & & 1 \end{pmatrix}_{(2n)\times(2n)} ,
$$

$$
U_B = \begin{pmatrix} a_n & & & & & & b_n \\ & \ddots & & & & & & & \\ & & a_2 & & & & & \\ & & & a_1 & b_1 & & & & \\ & & & & a_1^2 - b_1^2 & & & & \\ & & & & & a_2^2 - b_2^2 & & & \\ & & & & & & & a_2^2 - b_2^2 & & \\ & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^2 & \\ & & & & & & & & & & & a_n^2 - b_n^
$$

,

Remark 1. We observe that the matrices L_A and L_B in LU factorization of central symmetric X-form matrix has a unit λ -matrix.

Corollary 1. *If* A *and* B *are odd-order and even-order of a central symmetric* X*form matrices in form* (1) *and (2) respectively, then*

$$
\det(A) = a_1 \prod_{i=2}^n (a_i^2 - b_i^2),
$$

$$
\det(B) = \prod_{i=1}^n (a_i^2 - b_i^2).
$$

2.2. **Inverse of** A_n and B_n . It is clear that the necessary and sufficient conditions for invertibility of A_n are $a_1 \neq 0$ and $a_i \neq \pm b_i$ for $i = 2, 3, ..., n$. If the matrix Φ be the inverse of A_n , then we have $A_n\Phi = I$. If the elements of column j of Φ be $(\Phi_{1j}, \Phi_{2j}, ..., \Phi_{nj})^T$ then we have the following linear system of equations,

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ aⁿ bⁿ aⁿ−¹ bⁿ−¹ a² b² a1 b² a² bⁿ−¹ aⁿ−¹ bⁿ aⁿ ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Φ¹,j Φ²,j . . . Φ^j−1,j Φj,j Φj+1,j . . . Φ²n−2,j Φ²n−1,j ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 0 . . . 0 1 0 . . . 0 0 ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

With solving the above linear system for all column of Φ we have

$$
\begin{cases} \n\Phi_{ii} = \Phi_{2n-i,2n-i} = -\frac{a_{n+1-i}}{b_{n+1-i}^2 - a_{n+1-i}^2} & i = 1,2,..,n-1, \\
\Phi_{nn} = \frac{1}{a_1} & \Phi_{2n-i,i} = \Phi_{i,2n-i} = \frac{b_{n+1-i}}{b_{n+1-i}^2 - a_{n+1-i}^2} & i = 1,2,...,n-1.\n\end{cases}
$$

and this shows that Φ is also the central symmetric X-form matrix. For the inverse of B_n we also have similar relations.

3. Inverse eigenvalue problem

Theorem 1. *Assume* $\lambda_1^{(j)}$, $\lambda_j^{(j)}$ *for* $j = 1, ..., n$ *are the* $2n - 1$ *distinct real numbers, then there exist a central symmetric* X-form matrix in form (1) such that $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$ are the minimal and maximal eigenvalues of submatrix A_j respectively in form (3) *if and only if*

(4)
$$
\lambda_1^{(n)} < \lambda_1^{(n-1)} < \ldots < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \ldots < \lambda_n^{(n)}.
$$

Proof. Existence of matrices A_n such that $\lambda_1^{(j)}$, $\lambda_j^{(j)}$ are the its maximal and minimal eigenvalues respectively of its submatrix for $j = 1, 2, ..., n$ is equivalence to finding the solution for the following linear system of equations:

(5)
$$
p_j(\lambda_1^{(j)}) = [(a_j - \lambda_1^{(j)})^2 - b_j^2] p_{j-1}(\lambda_1^{(j)}) = 0,
$$

(6)
$$
p_j(\lambda_j^{(j)}) = [(a_j - \lambda_j^{(j)})^2 - b_j^2] p_{j-1}(\lambda_j^{(j)}) = 0,
$$

$$
(5) \Longrightarrow \qquad [(a_j - \lambda_1^{(j)})^2 - b_j^2] \; [(a_{j-1} - \lambda_1^{(j)})^2 - b_{j-1}^2] \; \cdots \; [(a_2 - \lambda_1^{(j)})^2 - b_2^2] \; [a_1 - \lambda_1^{(j)}] = 0,
$$

(6)
$$
\implies
$$
 [(a_j - \lambda_j^{(j)})^2 - b_j^2] [(a_{j-1} - \lambda_j^{(j)})^2 - b_{j-1}^2] \cdots [(a_2 - \lambda_j^{(j)})^2 - b_2^2] [a_1 - \lambda_j^{(j)}] = 0.
Thus

$$
(a_j - \lambda_1^{(j)})^2 - b_j^2 = 0
$$
 for $j = 2, 3, ..., n$
\n $(a_j - \lambda_j^{(j)})^2 - b_j^2 = 0$ for $j = 2, 3, ..., n$.

.

,

Then $a_1 = \lambda_1^{(1)}$ and whereas $\lambda_1^{(j)} \neq \lambda_j^{(j)}$, we have $a_j = \frac{\lambda_1^{(j)} + \lambda_j^{(j)}}{2}$ and $b_j^2 = (\frac{\lambda_j^{(j)} - \lambda_1^{(j)}}{2})^2$ for $j = 2, 3, ..., n$, therefore we can find all entries of matrix A_n .

Conversely since $p_j(\lambda) = [(a_j - \lambda)^2 - b_j^2] p_{j-1}(\lambda)$, then each root of p_{j-1} is a root of p_j , and we know that $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$ are the minimal and maximal eigenvalues of submatrix A_j in form (3) respectively, thus $\lambda_1^{(j-1)}$ and $\lambda_{j-1}^{(j-1)}$ are in between $\lambda_1^{(j)}$ and $\lambda_j^{(j)},$ i.e

(7)
$$
\lambda_1^{(j)} < \lambda_1^{(j-1)} < \lambda_{j-1}^{(j-1)} < \lambda_j^{(j)}.
$$

and so on we can write

$$
\lambda_1^{(n)} < \lambda_1^{(n-1)} < \ldots < \lambda_1^{(2)} < \lambda_1^{(1)} < \lambda_2^{(2)} < \ldots < \lambda_n^{(n)}.
$$

So the proof is completed. \square

Theorem 2. Assume $\lambda_1^{(2j)}$, $\lambda_{2j}^{(2j)}$ for $j = 1, ..., n$ are the 2n distinct real numbers, *then there exist an even-order central symmetric* X*-form matrix in form* (2) *such that* $\lambda_1^{(2j)}$ and $\lambda_{2j}^{(2j)}$ are the minimal and maximal eigenvalues of submatrix B_j respectively, *if and only if*

(8)
$$
\lambda_1^{(2n)} < \lambda_1^{(2n-2)} < \ldots < \lambda_1^{(2)} < \lambda_2^{(2)} < \ldots < \lambda_{2n}^{(2n)}.
$$

Proof. Proof is similar to proof of Theorem 1. \Box

Remark 2. If b_j for $j = 2, 3, ..., n$, are positive, then the matrix A_n is unique. **Remark 3.** Whereas all eigenvalues of A_{j-1} are the subset of eigenvalues A_j then all eigenvalues relation (4) are all eigenvalues of A_n .

Lemma 2. If A_n is a central symmetric X-form matrix in form (1) , then we have (a) $\lambda_1^{(j)} < a_j < \lambda_j^{(j)}$ where $\lambda_1^{(j)}$, $\lambda_j^{(j)}$ are the minimal and maximal eigenvalues of *submatrix of* A_n , *for* $j = 2, 3, ..., n$. (b) If $b_i > 0$ for $i = 2, ..., j$, then $|| A_j ||_{\infty} = || A_j ||_{1} = \lambda_j^{(j)}$, and if $b_i < 0$ for $i = 2, ..., j$,

then $|| A_j ||_{\infty} = || A_j ||_1 = \lambda_1^{(j)}$.

Proof. (a) According to the previous theorem 2, we have $a_j = \frac{\lambda_1^{(j)} + \lambda_j^{(j)}}{2}$ and also we have $\lambda_1^{(j)} < \lambda_j^{(j)}$ for $j = 2, ..., n$, then

$$
\frac{\lambda_1^{(j)} + \lambda_1^{(j)}}{2} < \frac{\lambda_1^{(j)} + \lambda_j^{(j)}}{2} < \frac{\lambda_j^{(j)} + \lambda_j^{(j)}}{2} \quad \Longrightarrow \quad \lambda_1^{(j)} < a_j < \lambda_j^{(j)}.
$$

(b) *Case (I):* $b_i > 0$ for $i = 2, ..., n$, then

$$
|| A_j ||_{\infty} = || A_j ||_{1} = \max \{ a_i + b_i = \frac{\lambda_1^{(i)} + \lambda_1^{(i)}}{2} + \frac{\lambda_1^{(i)} - \lambda_1^{(i)}}{2} = \lambda_1^{(i)} \quad i = 2, ..., j \} = \lambda_j^{(j)}
$$

for *j=2,...,n. Case (II):* $b_i < 0$ for $i = 2, ..., n$, then

$$
|| A_j ||_{\infty} = || A_j ||_1 = \max \{ a_i + b_i = \frac{\lambda_1^{(i)} + \lambda_1^{(i)}}{2} + \frac{\lambda_1^{(i)} - \lambda_1^{(i)}}{2} = \lambda_1^{(i)} \quad i = 2, ..., j \} = \lambda_1^{(j)}
$$

for *j=2,...,n.*

so that proof is completed. \square

4. Inverse singular value problem

In this section we study two inverse singular value problems as below: **problem I.** Given $2n - 1$ nonnegative real numbers $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$. We find $(2n-1) \times (2n-1)$ central symmetric X-form matrix A_n in form (1), such that $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$, are minimal and maximal singular value of submatrix A_j of A_n in form (3), and for given $2n$ nonnegative real numbers $\sigma_1^{(2j)}$ and $\sigma_{2j}^{(2j)}$ for $j = 1, 2, ..., n$, similarly we find $(2n) \times (2n)$ central symmetric X-form matrix B_n in form (2), such that $\sigma_1^{(2j)}$ and $\sigma_{2j}^{(2j)}$ for $j = 1, 2, ..., n$, are minimal and maximal singular value of submatrix B_j of B_n .

problem II. Given $2n - 1$ nonnegative real numbers $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$, we find the λ -matrix Λ_n in form (9) such that $\sigma_j^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$, are the minimal and maximal singular values of submatrix Λ_j from Λ_n , where

$$
(9) \lambda_n = \begin{pmatrix} \alpha_n & & & & & 0 \\ & \ddots & & & & & \\ & & \alpha_2 & & 0 & & \\ & & & \alpha_1 & & \\ & & & & \beta_2 & \sqrt{\alpha_2^2 - \beta_2^2} \\ & & & & & \ddots & \\ & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} \\ & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} \end{pmatrix}_{(2n-1)\times(2n-1)}
$$

Furthermore for 2n given nonnegative real numbers $\sigma_1^{(2j)}$ and $\sigma_{2j}^{(2j)}$ for $j = 1, 2, ..., n$, we find the λ -matrix Γ_n in form (10) such that $\sigma_1^{(2j)}$ and $\sigma_{2j}^{(2j)}$ for $j = 1, 2, ..., n$, are the minimal and maximal singular values of submatrix Γ_j from Γ_n , where

$$
(\mathbf{10})_n = \begin{pmatrix} \alpha_n & & & & & & 0 \\ & \ddots & & & & & & \\ & & \alpha_2 & & & & \\ & & & \alpha_1 & 0 & & \\ & & & & 0 & \alpha_1 & & \\ & & & & & \sqrt{\alpha_2^2 - \beta_2^2} & & \\ & & & & & & \ddots & \\ & & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} & \\ & & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} & \\ & & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} & \\ & & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} & \\ & & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} & \\ & & & & & & & \sqrt{\alpha_n^2 - \beta_n^2} & \\ & & & & &
$$

Theorem 3. *Assume* $\sigma_1^{(j)}$ *and* $\sigma_j^{(j)}$ *for* $j = 1, 2, ..., n$ *are the* $(2n-1)$ *real nonnegative numbers, then there exist a central symmetric* X*-form matrix in form* (1) *such that* $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ are the minimal and maximal singular values of submatrix A_j respec*tively in form* (3) *if and only if* $\sigma_1^{(j)}$ *and* $\sigma_j^{(j)}$ *for* $j = 1, 2, ..., n$ *satisfy in the following* *relation:*

(11)
$$
\sigma_1^{(n)} < \sigma_1^{(n-1)} < \cdots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \cdots < \sigma_n^{(n)}
$$

Proof. Let $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$ be the real nonnegative number that satisfy in (11). It is clear that $(\sigma_1^{(j)})^2$ and $(\sigma_1^{(j)})^2$ for $j = 1, 2, ..., n$, satisfy in there relations, this means

(12)
$$
(\sigma_1^{(n)})^2 < (\sigma_1^{(n-1)})^2 < \cdots < (\sigma_1^{(2)})^2 < (\sigma_1^{(1)})^2 < (\sigma_2^{(2)})^2 < \ldots < (\sigma_n^{(n)})^2.
$$

By Theorem 1 there exist an odd-order central symmetric X-form matrix that $(\sigma_1^{(j)})^2$ and $(\sigma_j^{(j)})^2$ are the minimal and maximal eigenvalues of its submatrices respectively. We show this matrix by A_n as follows:

(13)
$$
A_n = \begin{pmatrix} a_n & & & & & b_n \\ & \ddots & & & & \ddots & \\ & & a_2 & & b_2 & & \\ & & & a_1 & & & \\ & & & b_2 & & a_2 & & \\ & & & & & \ddots & & \\ & & & & & & a_n & \\ & & & & & & & a_n \end{pmatrix}_{(2n-1)\times(2n-1)},
$$

where

$$
a_i = \frac{(\sigma_1^{(i)})^2 + (\sigma_i^{(i)})^2}{2}, \qquad i = 1, 2, ..., n
$$

and

$$
b_i = \frac{((\sigma_i^{(i)})^2 - (\sigma_1^{(i)})^2)^2}{2}.
$$

 $i = 2, 3, ..., n$

On the other hand if C_n be an odd-order central symmetric X -form matrix as follows

$$
C_n = \begin{pmatrix} \alpha_n & & & & & \beta_n \\ & \ddots & & & & \vdots \\ & & \alpha_2 & & \beta_2 & & \\ & & & \alpha_1 & & & \\ & & & & \beta_2 & & \alpha_2 & \\ & & & & & \ddots & \\ & & & & & & \alpha_n & \\ \beta_n & & & & & & & \alpha_n \end{pmatrix}_{(2n-1)\times(2n-1)}
$$

,

then

$$
C_{n}C_{n}^{T} = \begin{pmatrix} \alpha_{n}^{2} + \beta_{n}^{2} & & & & 2\alpha_{n}\beta_{n} \\ & \ddots & & & & \vdots \\ & & \alpha_{2}^{2} + \beta_{2}^{2} & & \alpha_{2}^{2} \\ & & & 2\alpha_{2}\beta_{2} & & \alpha_{2}^{2} + \beta_{2}^{2} \\ & & & \ddots & & & \vdots \\ & & & & \ddots & & \vdots \\ & & & & & \ddots & & \vdots \\ & & & & & & \ddots & & \vdots \\ & & & & & & & \ddots & & \vdots \\ & & & & & & & & \ddots & \vdots \\ & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \ddots & \vdots \\ & & & & & & & & & & & & \
$$

Since $A_n = C_n C_n^T$, we can find the all elements of matrix $C_n C_n^T$ as the following

$$
a_1 = \alpha_1^2,
$$

\n
$$
a_i = \alpha_i^2 + \beta_i^2, \quad i = 2, 3, ..., n
$$

\n
$$
b_i = 2\alpha_i \beta_i, \qquad i = 2, 3, ..., n
$$

by combination of the above relations we have

$$
\begin{cases}\n(\alpha_i + \beta_i)^2 = a_i + b_i \\
(\alpha_i - \beta_i)^2 = a_i - b_i\n\end{cases}\n\Rightarrow\n\begin{cases}\n\alpha_i = \frac{\sqrt{(a_i + b_i)} + \sqrt{(a_i - b_i)}}{2} \\
\beta_i = \frac{\sqrt{(a_i + b_i)} - \sqrt{(a_i - b_i)}}{2}\n\end{cases}\n\quad i = 2, 3, \dots, n,
$$

Therefore the matrix C_n is solution of our problem.

Conversely at first, assume C_n is a matrix of form (1) of order $(2n-1)\times(2n-1)$ such that σ_1^j and σ_j^j are the minimal and maximal singular values of submatrix C_j in form (3) respectively. Then $(\sigma_i^j)^2$ and $(\sigma_j^j)^2$ are the minimal and maximal eigenvalues of submatrices $(C_n C_n^T)_j$ of $C_n C_n^T$ respectively. By Theorem 1 we have

$$
(15) \ (\sigma_1^{(n)})^2 < (\sigma_1^{(n-1)})^2 < \cdots < (\sigma_1^{(2)})^2 < (\sigma_1^{(1)})^2 < (\sigma_2^{(2)})^2 < \ldots < (\sigma_n^{(n)})^2,
$$

consequently we have

$$
\sigma_1^{(n)} < \sigma_1^{(n-1)} < \cdots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \ldots < \sigma_n^{(n)},
$$

and proof will be completed. \square

Remark 4. There is a similar result for even-order of above Theorem.

Theorem 4. Assume $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$ are the $(2n - 1)$ positive real *numbers, then there exist a matrix in form* (9) *such that* $\sigma_1^{(j)}$ *and* $\sigma_j^{(j)}$ *are the minimal and maximal singular values of submatrix* Λ_j *of* Λ_n *respectively, if and only if* $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, ..., n$ *satisfy in the following relation*

(16)
$$
\sigma_1^{(n)} < \sigma_1^{(n-1)} < \cdots < \sigma_1^{(2)} < \sigma_1^{(1)} < \sigma_2^{(2)} < \ldots < \sigma_n^{(n)}
$$

Proof. Assume $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$, are $2n-1$ positive real numbers which satisfy in the relation (11), consider the squares $(\sigma_1^{(j)})^2$ and $(\sigma_j^{(j)})^2$ for $j = 1, ..., n$, it is clear that these satisfy in relation (15), then from Theorem 1 there exist a central symmetric X-form matrix

such that $(\sigma_1^{(j)})^2$ and $(\sigma_1^{(j)})^2$ for $j = 1, 2, ..., n$, are the minimal and maximal eigenvalues of A_j from A respectively. We observe that if matrix Λ has form (9) then $\Lambda\Lambda^T$ has form (1) as follows

Now we set $\alpha_j^2 = a_j$ $j = 1, ..., n$ and $\beta_j \alpha_j = b_j$, $j = 2, ..., n$, to compute the entries of an $(2n-1)\times(2n-1)$ matrix Λ of the form (9) with the prescribed extremal singular values for the submatrices Λ_i

The proof of the second part is similar to the proof of inverse Theorem 3 . \Box **Remark 5.** There is a similar result for even-order of above Theorem.

5. Examples

Example 1. Assume $n = 5$ and given 9 real numbers as below

$$
\lambda_1^{(5)} \quad \lambda_1^{(4)} \quad \lambda_1^{(3)} \quad \lambda_1^{(2)} \quad \lambda_1^{(1)} \quad \lambda_2^{(2)} \quad \lambda_3^{(3)} \quad \lambda_4^{(4)} \quad \lambda_5^{(5)},
$$

 $-5 \quad -3 \quad 0 \quad 2 \quad 6 \quad 9 \quad 10 \quad 12 \quad 23,$

find the central symmetric X-form matrix such that $\lambda_1^{(j)}$ and $\lambda_j^{(j)}$ for $j = 1, 2, 3, 4, 5$ are the eigenvalues of submatrix A_i respectively.

Solution. By theorem 1 and some simple calculations, the solution of problem obtain

in the following form

Example 2. Assume $n = 5$, given 9 real numbers as below

 $\sigma_1^{(5)} \qquad \sigma_1^{(4)} \qquad \sigma_1^{(3)} \qquad \sigma_1^{(2)} \qquad \sigma_1^{(1)} \qquad \sigma_2^{(2)} \qquad \sigma_3^{(3)} \qquad \sigma_4^{(4)} \qquad \sigma_4^{(5)}$

0.51338 0.56793 0.6448 0.76537 1 1.8478 2.5080 3.065 3.554

find the central symmetric X-form matrix C_n and λ -matrix Λ_n such that $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, 3, 4, 5$ are the singular values of submatrices Λ_j for $j = 1, 2, 3, 4, 5$ respectively such that Λ_j has form (9) and C_j has form (3).

Solution. At first we find X-form matrix A by Theorem 1 as below

such that $(\sigma_1^{(j)})^2$ and $(\sigma_j^{(j)})^2$ for $j = 1, 2, 3, 4, 5$ are the minimal and maximal eigenvalues of submatrices A respectively in form (3) . Then by Theorem 3 we find X -form matrix C_n , such that $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j = 1, 2, 3, 4, 5$ are the minimal and maximal singular values of submatrices C_n respectively in form (3)

Then by Theorem 4 we find the λ -form matrix Λ_n such that $\sigma_1^{(j)}$ and $\sigma_j^{(j)}$ for $j =$ 1, 2, 3, 4, 5 are the minimal and maximal singular values of submatrices Λ_n respectively in form (9)

.

.

REFERENCES

- [1] Emedin Montano, Mario Salas, Ricardo L. Soto, Nonnegative matrices with prescribed extremal singular values, *Computers and Mathematics with Applications*, **56**, (2008), 30-42.
- [2] Juan Peng, Xi-Yan Hu, Lei Zhang, Two inverse eigenvalue problems for a special kind of matrices, *Linear Algebra and its Applications*, **416**, (2006), 336-347.
- [3] Hubert Pickmann, Juan Egana, Ricardo L. Soto, Extremal inverse eigenvalue problem for bordered diagonal matrices, *Linear Algebra and its Applications*, **427**, (2007), 256- 271.
- [4] Hubert Pickmann, Ricardo L. Soto, J. Egana, Mario Salas, An inverse eigenvalue problem for symmetrical tridiagonal matrices, *Computers and Mathematics with Applications*, **54**, (2007), 699-708.